论文标题

双臂机器人服装的以数据为中心的方法

A Data-Centric Approach For Dual-Arm Robotic Garment Flattening

论文作者

Duan, Li, Aragon-Camarasa, Gerardo

论文摘要

由于物体状态的高维度,服装扁平的管道需要识别机器人制作/选择操纵计划以使服装弄平的服装的配置。在本文中,我们提出了一种以数据为中心的方法,以根据已知的配置网络(KCNET)识别已知的服装配置,该构造是在深度图像上训练的,该图像捕获了已知的服装配置以及服装形状的先验知识。在本文中,我们提出了一种以数据为中心的方法,以根据已知的配置网络(KCNET)识别已知的服装配置,该配置在深度图像上训练了捕获已知的服装配置和服装形状的先验知识的深度图像。服装的已知配置是机器人在空气中间悬挂衣服时服装的配置。我们发现,如果我们让机器人识别服装的常见悬挂配置(已知配置),则可以实现92 \%的精度。我们还使用我们在双臂Baxter机器人上提出的方法证明了有效的机器人服装使管道扁平化。机器人的平均运营时间为221.6秒,并成功操纵了五种不同形状的服装。

Due to the high dimensionality of object states, a garment flattening pipeline requires recognising the configurations of garments for a robot to produce/select manipulation plans to flatten garments. In this paper, we propose a data-centric approach to identify known configurations of garments based on a known configuration network (KCNet) trained on depth images that capture the known configurations of garments and prior knowledge of garment shapes. In this paper, we propose a data-centric approach to identify the known configurations of garments based on a known configuration network (KCNet) trained on the depth images that capture the known configurations of garments and prior knowledge of garment shapes. The known configurations of garments are the configurations of garments when a robot hangs garments in the middle of the air. We found that it is possible to achieve 92\% accuracy if we let the robot recognise the common hanging configurations (the known configurations) of garments. We also demonstrate an effective robot garment flattening pipeline with our proposed approach on a dual-arm Baxter robot. The robot achieved an average operating time of 221.6 seconds and successfully manipulated garments of five different shapes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源