论文标题

Penrose Dodecahedron,Witting配置和量子纠缠

Penrose dodecahedron, Witting configuration and quantum entanglement

论文作者

Vlasov, Alexander Yu.

论文摘要

罗杰·彭罗斯(Roger Penrose)建议使用基于十二面体的几何形状的两个纠缠旋转3/2颗粒的模型,以制定贝尔定理的类似物“无概率”。该模型随后使用所谓的Witting配置在4D Hilbert Space中使用40射线进行了重新重新构建。但是,这种重新制定的需求对某些微妙的需求与两种此类配置有关的纠缠相关,对于非本地性和其他一些问题至关重要。在介绍的工作中讨论了两个通过witting配置描述的纠缠系统。相对于十二面体顶点的点的重复,随着25920/60 = 432次的对称性数量而产生相当显着的增加。量子电路模型是一种自然语言,用于描述具有不同状态的操作和此类系统的测量。

A model with two entangled spin-3/2 particles based on geometry of dodecahedron was suggested by Roger Penrose for formulation of analogue of Bell theorem "without probabilities." The model was later reformulated using so-called Witting configuration with 40 rays in 4D Hilbert space. However, such reformulation needs for some subtleties related with entanglement of two such configurations essential for consideration of non-locality and some other questions. Two entangled systems with quantum states described by Witting configurations are discussed in presented work. Duplication of points with respect to vertices of dodecahedron produces rather significant increase with number of symmetries in 25920/60=432 times. Quantum circuits model is a natural language for description of operations with different states and measurements of such systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源