论文标题

希钦组件,韦尔室价值长度和双空间的真实光谱紧凑

Real spectrum compactification of Hitchin components, Weyl chamber valued lengths, and dual spaces

论文作者

Flamm, Xenia

论文摘要

本文的主要结果是,$ \ mathbb {r} $的Hitchin表示$ \ MATHBB {f} $完全对应于封闭表面基本的基本组的那些表示$ \ textrm {pslm {psl {从$ \ mathbb {f}^n $中满足特定阳性属性的固定点的边界中的固定点的集合中,该表示的表示。由于定理处理一般的真实封闭字段,而且不仅是真实的,因此无法获得分析工具。取而代之的是,我们的证明是基于tarski-seidenberg转移原则和bonahon-dreyer坐标的乘法版本。我们使用此结果来证明$ \ mathbb {f} $ - 阳性表示形成了所有表示空间的半代数连接组件,这些组件完全由注射和离散表示形式组成,它们是积极的夸张和弱动态的,并且超过$ \ sathbb {f} $。此外,我们展示了如何将相交的测量电流与$ \ Mathbb {f} $ - 正表示,并以应用于Weyl Chamber长度压实和地球电流的双重空间的应用结论。

The main result of this article is that Hitchin representations over real closed field extensions $\mathbb{F}$ of $\mathbb{R}$ correspond precisely to those representations of the fundamental group of a closed surface into $\textrm{PSL}(n,\mathbb{F})$ that are conjugate to $\mathbb{F}$-positive representations, i.e. representations that admit an equivariant limit map from the set of fixed points in the boundary of the universal cover of the surface into the set of full flags in $\mathbb{F}^n$ satisfying specific positivity properties. As the theorem treats general real closed fields, and not only the reals, the tools of analysis are not available. Instead, our proof is based on the Tarski-Seidenberg transfer principle and a multiplicative version of the Bonahon-Dreyer coordinates. We use this result to prove that $\mathbb{F}$-positive representations form semi-algebraically connected components of the space of all representations, that consist entirely of injective and discrete representations, which are positively hyperbolic and weakly dynamics-preserving over $\mathbb{F}$. Furthermore, we show how to associate intersection geodesic currents to $\mathbb{F}$-positive representations, and conclude with applications to the Weyl chamber length compactification and to dual spaces of geodesic currents.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源