论文标题
卫星图像序列的巨大区域的大规模无监督时空语义分析
Large-scale unsupervised spatio-temporal semantic analysis of vast regions from satellite images sequences
论文作者
论文摘要
卫星图像的时间序列构成了分析感兴趣区域的高价和丰富的资源。但是,由于缺乏精确标记的数据,地形实体的定义和可变性,图像及其融合的固有复杂性,因此大规模自动获取知识是一项具有挑战性的任务。在这种情况下,我们提出了一种完全无监督和一般的方法,以从卫星图像序列中进行大型区域的时空分类学。我们的方法依赖于深层嵌入和时间序列聚类的结合来捕获地面的语义特性及其随着时间的推移的演变,从而对感兴趣的区域有了全面的了解。该方法通过专门设计的新方法来增强所提出的方法,以完善嵌入并利用潜在的时空模式。我们使用这种方法在不同的环境中对西班牙北部的220 km $^2 $地区进行深入分析。结果提供了广阔而直观的观点,该土地主要基于气候,植物学和水文因素,以紧凑且结构良好的方式连接大面积。
Temporal sequences of satellite images constitute a highly valuable and abundant resource for analyzing regions of interest. However, the automatic acquisition of knowledge on a large scale is a challenging task due to different factors such as the lack of precise labeled data, the definition and variability of the terrain entities, or the inherent complexity of the images and their fusion. In this context, we present a fully unsupervised and general methodology to conduct spatio-temporal taxonomies of large regions from sequences of satellite images. Our approach relies on a combination of deep embeddings and time series clustering to capture the semantic properties of the ground and its evolution over time, providing a comprehensive understanding of the region of interest. The proposed method is enhanced by a novel procedure specifically devised to refine the embedding and exploit the underlying spatio-temporal patterns. We use this methodology to conduct an in-depth analysis of a 220 km$^2$ region in northern Spain in different settings. The results provide a broad and intuitive perspective of the land where large areas are connected in a compact and well-structured manner, mainly based on climatic, phytological, and hydrological factors.