论文标题
部分可观测时空混沌系统的无模型预测
Long-Term Simulations of Dynamical Ejecta: Homologous Expansion and Kilonova Properties
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Accurate numerical-relativity simulations are essential to study the rich phenomenology of binary neutron star systems. In this work, we focus on the material that is dynamically ejected during the merger process and on the kilonova transient it produces. Typically, radiative transfer simulations of kilonova light curves from ejecta make the assumption of homologous expansion, but this condition might not always be met at the end of usually very short numerical-relativity simulations. In this article, we adjust the infrastructure of the BAM code to enable longer simulations of the dynamical ejecta with the aim of investigating when the condition of homologous expansion is satisfied. In fact, we observe that the deviations from a perfect homologous expansion are about 30% at roughly 100ms after the merger. To determine how these deviations might affect the calculation of kilonova light curves, we extract the ejecta data for different reference times and use them as input for radiative transfer simulations. Our results show that the light curves for extraction times later than 80ms after the merger deviate by less than 0.4mag and are mostly consistent with numerical noise. Accordingly, deviations from the homologous expansion for the dynamical ejecta component are negligible for the purpose of kilonova modelling.