论文标题
通过探索模糊的形成过程来迈向现实世界的视频消失
Towards Real-World Video Deblurring by Exploring Blur Formation Process
论文作者
论文摘要
本文旨在探讨如何综合近距离模糊的现有视频脱俗模型,对其进行了训练的视频,可以很好地推广到现实世界中的模糊视频。近年来,基于深度学习的方法已在视频造成的任务上取得了希望的成功。但是,对现有合成数据集培训的模型仍然遭受了与现实世界中的模糊场景的概括问题。造成故障的因素仍然未知。因此,我们重新审视经典的模糊综合管道,并找出可能的原因,包括拍摄参数,模糊形成空间和图像信号处理器〜(ISP)。为了分析这些潜在因素的效果,我们首先收集一个超高帧速率(940 fps)原始视频数据集作为数据基础,以综合各种模糊。然后,我们提出了一种新颖的现实模糊合成管道,该管道通过利用模糊形成线索称为原始爆炸。通过许多实验,我们证明了在原始空间中的合成模糊,并采用与现实世界测试数据相同的ISP可以有效地消除合成数据的负面影响。此外,综合模糊视频的拍摄参数,例如,曝光时间和帧速率在改善脱毛模型的性能中起着重要作用。令人印象深刻的是,针对在现有的合成模糊数据集中训练的训练的模型训练了由提议的原始管道综合的模糊数据训练的模型可以获得超过5DB的PSNR增益。我们认为,新颖的现实合成管道和相应的原始视频数据集可以帮助社区轻松构建自定义的Blur数据集,以在很大程度上改善现实世界的视频DEBLURING性能,而不是费力地收集真实的数据对。
This paper aims at exploring how to synthesize close-to-real blurs that existing video deblurring models trained on them can generalize well to real-world blurry videos. In recent years, deep learning-based approaches have achieved promising success on video deblurring task. However, the models trained on existing synthetic datasets still suffer from generalization problems over real-world blurry scenarios with undesired artifacts. The factors accounting for the failure remain unknown. Therefore, we revisit the classical blur synthesis pipeline and figure out the possible reasons, including shooting parameters, blur formation space, and image signal processor~(ISP). To analyze the effects of these potential factors, we first collect an ultra-high frame-rate (940 FPS) RAW video dataset as the data basis to synthesize various kinds of blurs. Then we propose a novel realistic blur synthesis pipeline termed as RAW-Blur by leveraging blur formation cues. Through numerous experiments, we demonstrate that synthesizing blurs in the RAW space and adopting the same ISP as the real-world testing data can effectively eliminate the negative effects of synthetic data. Furthermore, the shooting parameters of the synthesized blurry video, e.g., exposure time and frame-rate play significant roles in improving the performance of deblurring models. Impressively, the models trained on the blurry data synthesized by the proposed RAW-Blur pipeline can obtain more than 5dB PSNR gain against those trained on the existing synthetic blur datasets. We believe the novel realistic synthesis pipeline and the corresponding RAW video dataset can help the community to easily construct customized blur datasets to improve real-world video deblurring performance largely, instead of laboriously collecting real data pairs.