论文标题
可伸缩的纳米光峰尖峰神经网络
Scalable Nanophotonic-Electronic Spiking Neural Networks
论文作者
论文摘要
尖峰神经网络(SNN)提供了一个新的计算范式,能够高度平行,实时处理。光子设备是设计与SNN计算范式相匹配的高带宽,平行体系结构的理想选择。 CMO和光子元件的协整允许将低损坏光子设备与模拟电子设备结合使用,以更大的非线性计算元件的灵活性。因此,我们在整体硅光子学(SIPH)过程上设计并模拟了光电尖峰神经元电路,该过程复制了超出泄漏的集成和火的有用的尖峰行为(LIF)。此外,我们探索了两种学习算法,具有使用Mach-Zehnder干涉测量法(MZI)网格作为突触互连的片上学习的潜力。实验证明了随机反向传播(RPB)的变体,并在简单分类任务上与标准线性回归的性能相匹配。同时,将对比性HEBBIAN学习(CHL)规则应用于由MZI网格组成的模拟神经网络,以进行随机输入输出映射任务。受CHL训练的MZI网络的性能比随机猜测要好,但不符合理想神经网络的性能(没有MZI网格施加的约束)。通过这些努力,我们证明了协调的CMO和SIPH技术非常适合可扩展的SNN计算体系结构的设计。
Spiking neural networks (SNN) provide a new computational paradigm capable of highly parallelized, real-time processing. Photonic devices are ideal for the design of high-bandwidth, parallel architectures matching the SNN computational paradigm. Co-integration of CMOS and photonic elements allow low-loss photonic devices to be combined with analog electronics for greater flexibility of nonlinear computational elements. As such, we designed and simulated an optoelectronic spiking neuron circuit on a monolithic silicon photonics (SiPh) process that replicates useful spiking behaviors beyond the leaky integrate-and-fire (LIF). Additionally, we explored two learning algorithms with the potential for on-chip learning using Mach-Zehnder Interferometric (MZI) meshes as synaptic interconnects. A variation of Random Backpropagation (RPB) was experimentally demonstrated on-chip and matched the performance of a standard linear regression on a simple classification task. Meanwhile, the Contrastive Hebbian Learning (CHL) rule was applied to a simulated neural network composed of MZI meshes for a random input-output mapping task. The CHL-trained MZI network performed better than random guessing but does not match the performance of the ideal neural network (without the constraints imposed by the MZI meshes). Through these efforts, we demonstrate that co-integrated CMOS and SiPh technologies are well-suited to the design of scalable SNN computing architectures.