论文标题

关于使用自动化机器学习工具的实证研究

An Empirical Study on the Usage of Automated Machine Learning Tools

论文作者

Majidi, Forough, Openja, Moses, Khomh, Foutse, Li, Heng

论文摘要

在过去的几年中,自动化机器学习(AUTOML)工具的普及有所增加。机器学习(ML)从业人员使用汽车工具来自动化和优化功能工程,模型培训和超参数优化的过程等。最近的工作对从业人员使用汽车工具的经验进行了定性研究,并根据其性能和提供的功能比较了不同的汽车工具,但是现有的工作都没有研究在大规模实际项目中使用自动工具的实践。因此,我们进行了一项实证研究,以了解ML从业者如何在其项目中使用汽车工具。为此,我们在GitHub上托管的大量开源项目存储库中研究了最使用的十大汽车工具及其各自的用法。我们研究的结果表明1)ML从业人员主要使用哪种汽车工具以及2)使用这些汽车工具的存储库的特征。此外,我们确定了使用自动工具(例如,模型参数采样,搜索空间管理,模型评估/错误分析,数据/功能转换和数据标记)以及使用自动工具的ML管道(例如功能工程)的阶段。最后,我们报告在同一源代码文件中使用Automl工具的频率。我们希望我们的结果可以帮助ML从业人员了解不同的汽车工具及其使用情况,以便他们可以为其目的选择正确的工具。此外,Automl工具开发人员可以从我们的发现中受益,以深入了解其工具的用法并改善其工具以更好地适合用户的用法和需求。

The popularity of automated machine learning (AutoML) tools in different domains has increased over the past few years. Machine learning (ML) practitioners use AutoML tools to automate and optimize the process of feature engineering, model training, and hyperparameter optimization and so on. Recent work performed qualitative studies on practitioners' experiences of using AutoML tools and compared different AutoML tools based on their performance and provided features, but none of the existing work studied the practices of using AutoML tools in real-world projects at a large scale. Therefore, we conducted an empirical study to understand how ML practitioners use AutoML tools in their projects. To this end, we examined the top 10 most used AutoML tools and their respective usages in a large number of open-source project repositories hosted on GitHub. The results of our study show 1) which AutoML tools are mostly used by ML practitioners and 2) the characteristics of the repositories that use these AutoML tools. Also, we identified the purpose of using AutoML tools (e.g. model parameter sampling, search space management, model evaluation/error-analysis, Data/ feature transformation, and data labeling) and the stages of the ML pipeline (e.g. feature engineering) where AutoML tools are used. Finally, we report how often AutoML tools are used together in the same source code files. We hope our results can help ML practitioners learn about different AutoML tools and their usages, so that they can pick the right tool for their purposes. Besides, AutoML tool developers can benefit from our findings to gain insight into the usages of their tools and improve their tools to better fit the users' usages and needs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源