论文标题
使用热纯量子状态的量规理论的量子计算相图
Toward Quantum Computing Phase Diagrams of Gauge Theories with Thermal Pure Quantum States
论文作者
论文摘要
在有限温度和化学电位下自然界强相互作用的相图在理论上仍然在很大程度上没有探索,这是由于基于蒙特 - 卡洛的计算技术不足以克服符号问题。量子计算提供了一种无标志的方法,但是评估热期望值通常是量子计算机的资源密集型。为了促进量规理论的热力学研究,我们提出了应用于受约束量规方法动力学的统计力学的热 - 量化量子状态公式的概括,并在数值上证明,使用这种方法,包括在该方法中绘制奇特的相结合,包括在模型中绘制奇特的过渡温度和化学的温度和化学的化学定量。进一步讨论了量子算法,资源需求以及算法和硬件错误分析,以激发未来的实现。因此,在量子计算时代,热纯量子状态可能提出适合在量规理论中有效的热状态制备的候选者。
The phase diagram of strong interactions in nature at finite temperature and chemical potential remains largely unexplored theoretically due to inadequacy of Monte-Carlo-based computational techniques in overcoming a sign problem. Quantum computing offers a sign-problem-free approach but evaluating thermal expectation values is generally resource intensive on quantum computers. To facilitate thermodynamic studies of gauge theories, we propose a generalization of thermal-pure-quantum-state formulation of statistical mechanics applied to constrained gauge-theory dynamics, and numerically demonstrate that the phase diagram of a simple low-dimensional gauge theory is robustly determined using this approach, including mapping a chiral phase transition in the model at finite temperature and chemical potential. Quantum algorithms, resource requirements, and algorithmic and hardware error analysis are further discussed to motivate future implementations. Thermal pure quantum states, therefore, may present a suitable candidate for efficient thermal-state preparation in gauge theories in the era of quantum computing.