论文标题
一类新的常规黑洞解决方案,具有准定位物质的物质来源$(2 + 1)$ dimensions
A new class of regular black hole solutions with quasi-localized sources of matter in $(2 + 1)$ dimensions
论文作者
论文摘要
本文通过引入Estrada和Tello-Ortiz提出的准定位物质模型的概括来研究(2 + 1)维度中的一类新的常规黑洞解决方案。最初,我们试图将能量量张量中编码的物质来源物理解释为源自非线性电动力学。但是,我们表明,能量密度的准平分所需的条件与非线性电动力学的预期行为不相容,这必须倾向于麦克斯韦在渐近极限上的理论。尽管如此,我们还是提出了准定位的能量密度的概括,该概括涵盖了文献中现有模型,并使我们能够获得一类常规黑洞溶液,这些溶液在事件视野及其热力学特性上表现出显着的特征。此外,由于由于存在物质领域的存在,因此热力学的第一定律通常会导致常规黑洞的熵值和热力学量的不正确值,我们为常规黑洞的第一定律提出了新版本。
This paper investigates a new class of regular black hole solutions in (2 + 1)-dimensions by introducing a generalization of the quasi-localized matter model proposed by Estrada and Tello-Ortiz. Initially, we try to physically interpret the matter source encoded in the energy-momentum tensor as originating from nonlinear electrodynamics. We show, however, that the required conditions for the quasi-locality of the energy density are incompatible with the expected behavior of nonlinear electrodynamics, which must tend to Maxwell's theory on the asymptotic limit. Despite this, we propose a generalization for the quasi-localized energy density that encompasses the existing models in the literature and allows us to obtain a class of regular black hole solutions exhibiting remarkable features on the event horizons and their thermodynamic properties. Furthermore, since the usual version of the first law of thermodynamics, due to the presence of the matter fields, leads to incorrect values of entropy and thermodynamics volume for regular black holes, we propose a new version of the first law for regular black holes.