论文标题
对象目标导航的空间关系图和图形卷积网络
Spatial Relation Graph and Graph Convolutional Network for Object Goal Navigation
论文作者
论文摘要
本文描述了对象目标导航任务的框架,该任务要求机器人从随机的启动位置查找并移至目标对象类的最接近实例。该框架使用机器人轨迹的历史记录来学习空间关系图(SRG)和图形卷积网络(GCN)基于基于不同语义标记区域的可能性以及这些区域中不同对象类别的发生的可能性。为了在评估过程中定位目标对象实例,机器人使用贝叶斯推理和SRG估计可见区域,并使用学习的GCN嵌入来对可见区域进行排名,并选择接下来的区域。
This paper describes a framework for the object-goal navigation task, which requires a robot to find and move to the closest instance of a target object class from a random starting position. The framework uses a history of robot trajectories to learn a Spatial Relational Graph (SRG) and Graph Convolutional Network (GCN)-based embeddings for the likelihood of proximity of different semantically-labeled regions and the occurrence of different object classes in these regions. To locate a target object instance during evaluation, the robot uses Bayesian inference and the SRG to estimate the visible regions, and uses the learned GCN embeddings to rank visible regions and select the region to explore next.