论文标题

神经形态的视觉场景通过谐振网络理解

Neuromorphic Visual Scene Understanding with Resonator Networks

论文作者

Renner, Alpha, Supic, Lazar, Danielescu, Andreea, Indiveri, Giacomo, Olshausen, Bruno A., Sandamirskaya, Yulia, Sommer, Friedrich T., Frady, E. Paxon

论文摘要

通过推断生成模型的配置来分析视觉场景被广泛认为是场景理解的最灵活和概括的方法。但是,一个主要问题是推理过程的计算挑战,涉及对象身份和姿势的组合搜索。在这里,我们提出了一种利用三个关键概念的神经形态解:(1)基于矢量符号体系结构(VSA)的计算框架,带有复杂值矢量; (2)分层谐振网络(HRN)的设计,以分解视觉场景中的非交换变换和旋转; (3)用于在神经形态硬件上实现复杂值的谐振网络的多室峰值相分子神经元模型的设计。 VSA框架使用矢量结合操作形成了生成图像模型,其中绑定充当了几何变换的模棱两可的操作。因此,可以将场景描述为向量产品的总和,然后可以通过谐振器网络有效地分解该场景,以推断对象及其姿势。 HRN具有分区结构,其中矢量绑定是一个分区内的水平和垂直翻译以及另一个分区内旋转和缩放的等效性。尖峰神经元模型允许将谐振网络映射到有效且低功耗的神经形态硬件上。我们的方法是在由简单的2D形状组成的合成场景中证明的,经历了严格的几何变换和颜色变化。同伴论文在现实世界的应用程序方案中展示了相同的方法,用于机器视觉和机器人技术。

Analyzing a visual scene by inferring the configuration of a generative model is widely considered the most flexible and generalizable approach to scene understanding. Yet, one major problem is the computational challenge of the inference procedure, involving a combinatorial search across object identities and poses. Here we propose a neuromorphic solution exploiting three key concepts: (1) a computational framework based on Vector Symbolic Architectures (VSA) with complex-valued vectors; (2) the design of Hierarchical Resonator Networks (HRN) to factorize the non-commutative transforms translation and rotation in visual scenes; (3) the design of a multi-compartment spiking phasor neuron model for implementing complex-valued resonator networks on neuromorphic hardware. The VSA framework uses vector binding operations to form a generative image model in which binding acts as the equivariant operation for geometric transformations. A scene can, therefore, be described as a sum of vector products, which can then be efficiently factorized by a resonator network to infer objects and their poses. The HRN features a partitioned architecture in which vector binding is equivariant for horizontal and vertical translation within one partition and for rotation and scaling within the other partition. The spiking neuron model allows mapping the resonator network onto efficient and low-power neuromorphic hardware. Our approach is demonstrated on synthetic scenes composed of simple 2D shapes undergoing rigid geometric transformations and color changes. A companion paper demonstrates the same approach in real-world application scenarios for machine vision and robotics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源