论文标题

威慑:使用加固学习检测木马

DETERRENT: Detecting Trojans using Reinforcement Learning

论文作者

Gohil, Vasudev, Patnaik, Satwik, Guo, Hao, Kalathil, Dileep, Jeyavijayan, Rajendran

论文摘要

在集成电路中插入硬件木马(HTS)是一个有害威胁。由于HT在罕见触发条件下激活,因此使用随机逻辑模拟检测它们是不可行的。在这项工作中,我们设计了一个增强型学习(RL)代理,该学习代理绕过指数搜索空间并返回最小的模式集,该模式最有可能检测到HTS。各种基准的实验结果证明了我们的RL代理的功效和可扩展性,与最先进的技术相比,在保持或改善覆盖范围($ 95.75 \%$)的同时,所需的测试模式数量显着降低($ 169 \ times $)。

Insertion of hardware Trojans (HTs) in integrated circuits is a pernicious threat. Since HTs are activated under rare trigger conditions, detecting them using random logic simulations is infeasible. In this work, we design a reinforcement learning (RL) agent that circumvents the exponential search space and returns a minimal set of patterns that is most likely to detect HTs. Experimental results on a variety of benchmarks demonstrate the efficacy and scalability of our RL agent, which obtains a significant reduction ($169\times$) in the number of test patterns required while maintaining or improving coverage ($95.75\%$) compared to the state-of-the-art techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源