论文标题

多维排列中的单例网格图案

Singleton mesh patterns in multidimensional permutations

论文作者

Avgustinovich, Sergey, Kitaev, Sergey, Liese, Jeffrey, Potapov, Vladimir, Taranenko, Anna

论文摘要

本文介绍了多维排列中网格模式的概念,并启动了对单胎网格模式(SMP)的系统研究,该研究是长度1的多维网格模式。作为我们的主要结果,我们使用称为其等级的模式的不变性对可避免的SMP进行了完整的表征。我们表明,确定$ d $二维的SMP $ p $ j $ k $的避免性是$ o(d \ cdot k)$问题,而确定$ p $的排名是NP完整的问题。另外,使用负式距离模式的概念,我们表征了SMP,这些SMP最多发生在任何$ d $二维的置换中。最后,我们提供了有关某些一般投影,加上距离,负式 - 距离和超平面SMP的分布的许多列举结果。

This paper introduces the notion of mesh patterns in multidimensional permutations and initiates a systematic study of singleton mesh patterns (SMPs), which are multidimensional mesh patterns of length 1. A pattern is avoidable if there exist arbitrarily large permutations that do not contain it. As our main result, we give a complete characterization of avoidable SMPs using an invariant of a pattern that we call its rank. We show that determining avoidability for a $d$-dimensional SMP $P$ of cardinality $k$ is an $O(d\cdot k)$ problem, while determining rank of $P$ is an NP-complete problem. Additionally, using the notion of a minus-antipodal pattern, we characterize SMPs which occur at most once in any $d$-dimensional permutation. Lastly, we provide a number of enumerative results regarding the distributions of certain general projective, plus-antipodal, minus-antipodal and hyperplane SMPs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源