论文标题

纠缠否定性与量子大厅效应中的互相信息

Entanglement negativity versus mutual information in the quantum Hall effect and beyond

论文作者

Liu, Chia-Chuan, Geoffrion, Juliette, Witczak-Krempa, William

论文摘要

我们研究了包括不可压缩量子霍尔的大型系统中的两项纠缠措施:对数负性(LN)和相互信息(MI)。对于纯状态,例如从零温度下的两十字架获得的,它们提供了两个空间子区域之间存在的纠缠的不同特征,而对于混合状态(例如在有限温度下),只有LN仍然是良好的纠缠度量。我们的重点是具有邻近或尖端触摸的区域。我们首先获得了有关LN和MI在包括分数量子霍尔状态在内的大家族中LN和MI的几何依赖性的非扰动特性。在超级全角依赖性的情况下,观察到相似性的相似性。对于MI,我们由于强大的亚热性而发表更强的陈述。我们还将一般分析的后果分析到两个空间维度中的形成性场理论(CFT)。然后,我们用整数量子厅状态明确验证这些属性。为此,我们开发了两种独立的方法来获取费米子LN,该方法考虑了费米统计数据:一种重叠 - 矩阵方法和一种真实的空间晶格离散化。在有限温度下,我们发现在整数填充物处的回旋子间隙内部的LN迅速降低。我们进一步表明,与高温下的MI相比,LN的衰变速度更快。

We study two entanglement measures in a large family of systems including incompressible quantum Hall states: the logarithmic negativity (LN), and mutual information (MI). For pure states, obtained for example from a bipartition at zero temperature, these provide distinct characterizations of the entanglement present between two spatial subregions, while for mixed states (such as at finite temperature) only the LN remains a good entanglement measure. Our focus is on regions that have corners, either adjacent or tip-touching. We first obtain non-perturbative properties regarding the geometrical dependence of the LN and MI in a large family of isotropic states, including fractional quantum Hall states. A close similarity is observed with mutual charge fluctuations, where super-universal angle dependence holds. For the MI, we make stronger statements due to strong subadditivity. We also give ramifications of our general analysis to conformal field theories (CFTs) in two spatial dimensions. We then explicitly verify these properties with integer quantum Hall states. To do so we develop two independent approaches to obtain the fermionic LN, which takes into account Fermi statistics: an overlap-matrix method, and a real-space lattice discretization. At finite temperature, we find a rapid decrease of the LN well inside the cyclotron gap at integer fillings. We further show that the LN decays faster compared to the MI at high temperatures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源