论文标题

可解释的(不仅仅是可解释的)医疗索赔模型,以防止可避免的全因再入院或死亡

Interpretable (not just posthoc-explainable) medical claims modeling for discharge placement to prevent avoidable all-cause readmissions or death

论文作者

Chang, Joshua C., Chang, Ted L., Chow, Carson C., Mahajan, Rohit, Mahajan, Sonya, Maisog, Joe, Vattikuti, Shashaank, Xia, Hongjing

论文摘要

我们开发了一个可解释的多级贝叶斯框架,用于表示回归系数的变化,这些框架模仿了恢复激活的深神经网络的分段线性。我们使用该框架来制定一种生存模型,用于使用医学索赔来预测侧重于出院的医院再入院和死亡,并调整了估计因果关系局部平均治疗效果时的混淆。我们根据2009---2011的住院发作,对2008年和2011年的Medicare受益人样本进行了5%的样本培训,然后在2012年的发作中测试了该模型。该模型在预测全原因再入院时的AUROC为0.76(使用官方的Medicare和Medicaid Services(CMS)方法定义),或在出院30天内的死亡,与XGBOOST和贝叶斯深神经网络有竞争力,表明一个人需要牺牲的能力来准确。至关重要的是,作为回归模型,我们提供了黑框无法的 - 确切的金标准全局解释,识别相对风险因素并量化放电放置的效果。我们还表明,后解释器的形状无法提供准确的解释。

We developed an inherently interpretable multilevel Bayesian framework for representing variation in regression coefficients that mimics the piecewise linearity of ReLU-activated deep neural networks. We used the framework to formulate a survival model for using medical claims to predict hospital readmission and death that focuses on discharge placement, adjusting for confounding in estimating causal local average treatment effects. We trained the model on a 5% sample of Medicare beneficiaries from 2008 and 2011, based on their 2009--2011 inpatient episodes, and then tested the model on 2012 episodes. The model scored an AUROC of approximately 0.76 on predicting all-cause readmissions -- defined using official Centers for Medicare and Medicaid Services (CMS) methodology -- or death within 30-days of discharge, being competitive against XGBoost and a Bayesian deep neural network, demonstrating that one need-not sacrifice interpretability for accuracy. Crucially, as a regression model, we provide what blackboxes cannot -- the exact gold-standard global interpretation of the model, identifying relative risk factors and quantifying the effect of discharge placement. We also show that the posthoc explainer SHAP fails to provide accurate explanations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源