论文标题

在车辆网络中具有隐私边缘情报的联合框架

A Joint Framework to Privacy-Preserving Edge Intelligence in Vehicular Networks

论文作者

Firdaus, Muhammad, Rhee, Kyung-Hyune

论文摘要

随着来自各种设备产生的大量异质数据,与互联网连接的设备的数量已成倍增长,从而导致高度相互交织的网络物理系统。当前,利用边缘计算和人工智能(AI)的优点的边缘情报系统(EIS)概念可用于提供强大的计算处理并减少决策延迟。因此,EIS为实现未来的智能运输系统(ITS)提供了一种可能的解决方案,尤其是在车辆网络框架中。但是,由于中央聚合器服务器监督整个系统编排,因此现有的EIS框架面临着一些挑战,并且仍然可能受到许多恶意攻击的影响。因此,为了解决前面提到的问题,本文介绍了安全边缘智能的概念,合并了联合学习的好处(FL),区块链和当地差异隐私(LDP)。区块链辅助的FL方法有效地提高了流量预测的准确性,并通过记录不变的分布式分类帐网络中的交易并提供分散的奖励机制系统,从而提高了用户隐私和安全性。此外,LDP有权加强数据共享交易的机密性,尤其是在保护用户的私人数据免受各种攻击的方面。提出的框架已在两种情况下实施,即基于区块链的FL,以有效地开发用于车辆网络和基于LDP的FL的分散交通管理,以使用IBM库来为差异隐私提供随机的隐私保护。

The number of internet-connected devices has been exponentially growing with the massive volume of heterogeneous data generated from various devices, resulting in a highly intertwined cyber-physical system. Currently, the Edge Intelligence System (EIS) concept that leverages the merits of edge computing and Artificial Intelligence (AI) is utilized to provide smart cloud services with powerful computational processing and reduce decision-making delays. Thus, EIS offers a possible solution to realizing future Intelligent Transportation Systems (ITS), especially in a vehicular network framework. However, since the central aggregator server supervises the entire system orchestration, the existing EIS framework faces several challenges and is still potentially susceptible to numerous malicious attacks. Hence, to solve the issues mentioned earlier, this paper presents the notion of secure edge intelligence, merging the benefits of Federated Learning (FL), blockchain, and Local Differential Privacy (LDP). The blockchain-assisted FL approach efficiently improves traffic prediction accuracy and enhances user privacy and security by recording transactions in immutable distributed ledger networks and providing a decentralized reward mechanism system. Furthermore, LDP is empowered to strengthen the confidentiality of data sharing transactions, especially in protecting users' private data from various attacks. The proposed framework has been implemented in two scenarios, i.e., blockchain-based FL to efficiently develop the decentralized traffic management for vehicular networks and LDP-based FL to produce randomized privacy protection using the IBM Library for differential privacy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源