论文标题
通过监督学习自动测试和验证细节降低的水平
Automatic Testing and Validation of Level of Detail Reductions Through Supervised Learning
论文作者
论文摘要
现代视频游戏的规模和规模迅速增长,为了创造丰富而有趣的环境,需要大量内容。结果,通常使用数千个详细的3D资产来创建一个场景。由于每个资产的多边形网格可以包含数百万个多边形,因此需要绘制的多边形数量可能超过数十亿。因此,计算资源通常会限制可以在场景中显示的详细对象。为了推动这一限制并优化性能,可以在可能的情况下减少资产的多边形计数。基本上,这个想法是,距捕获相机距离更远的对象,因此屏幕尺寸相对较小,其多边形计数可能会降低而不会影响感知的质量。细节级别(LOD)是指3D模型表示的复杂性水平。消除复杂性的过程通常称为降低LOD,可以通过算法或由艺术家手动自动完成。但是,如果不同的LOD显着差异,或者如果LOD降低过渡不是无缝的,则此过程可能导致视觉质量恶化。今天,这些结果的验证主要是手动需要专家在视觉上检查结果。但是,这个过程很慢,平凡,因此容易出错。本文中,我们提出了一种根据深度卷积网络的使用来自动化此过程的方法。我们报告有希望的结果,并设想该方法可用于自动化减少LOD测试和验证的过程。
Modern video games are rapidly growing in size and scale, and to create rich and interesting environments, a large amount of content is needed. As a consequence, often several thousands of detailed 3D assets are used to create a single scene. As each asset's polygon mesh can contain millions of polygons, the number of polygons that need to be drawn every frame may exceed several billions. Therefore, the computational resources often limit how many detailed objects that can be displayed in a scene. To push this limit and to optimize performance one can reduce the polygon count of the assets when possible. Basically, the idea is that an object at farther distance from the capturing camera, consequently with relatively smaller screen size, its polygon count may be reduced without affecting the perceived quality. Level of Detail (LOD) refers to the complexity level of a 3D model representation. The process of removing complexity is often called LOD reduction and can be done automatically with an algorithm or by hand by artists. However, this process may lead to deterioration of the visual quality if the different LODs differ significantly, or if LOD reduction transition is not seamless. Today the validation of these results is mainly done manually requiring an expert to visually inspect the results. However, this process is slow, mundane, and therefore prone to error. Herein we propose a method to automate this process based on the use of deep convolutional networks. We report promising results and envision that this method can be used to automate the process of LOD reduction testing and validation.