论文标题

统一空间框架复合体的同置特性

Homotopy properties of the complex of frames of a unitary space

论文作者

Piterman, Kevin Ivan, Welker, Volkmar

论文摘要

令$ v $是一个有限的维矢量空间,配备了非脱位式遗传学形式,上面是$ \ mathbb {k} $。令$ \ mathcal {g}(v)$为顶点的图形设置$ 1 $ - 二维非授权子空间$ v $和正交性给出的邻接关系。我们对$ \ MATHCAL {G}(V)$的何时完整说明是根据$ V $的尺寸和地面场$ \ Mathbb {k} $连接的。此外,我们证明,如果$ \ dim(v)> 4 $,则$ \ MATHCAL {g}(g}(v)$的集团复杂$ \ mathcal {f}(v)$简单地连接。对于有限字段$ \ mathbb {k} $,我们还计算了$ \ Mathcal {g}(v)$的邻接矩阵的特征值。然后,通过加兰的方法,我们得出结论,$ \ tilde {h} _m(\ mathcal {f}(v)(v); \ \ mathbb {k})= 0 $ 0 $ 0 \ leq m \ leq m \ leq m \ leq \ leq \ leq \ dim(v)-3 $ | \ Mathbb {K} | $。在这些假设下,我们推断出$ \ Mathcal {f}(v)$变形的Barycentric细分将$ \ Mathcal {f}(f}(v)$的一定等级选择的顺序缩回,这是Cohen-Macaulay,这是$ \ nathbb {k} $。 最后,我们将结果应用于有限组的基本Abelian $ p $ -subgroups的Quillen Poset,并研究了$ v $的非分类子空间和$ v $的正交分解的Poset的几何属性。

Let $V$ be a finite dimensional vector space equipped with a non-degenerate Hermitian form over a field $\mathbb{K}$. Let $\mathcal{G}(V)$ be the graph with vertex set the $1$-dimensional non-degenerate subspaces of $V$ and adjacency relation given by orthogonality. We give a complete description of when $\mathcal{G}(V)$ is connected in terms of the dimension of $V$ and the size of the ground field $\mathbb{K}$. Furthermore, we prove that if $\dim(V) > 4$ then the clique complex $\mathcal{F}(V)$ of $\mathcal{G}(V)$ is simply connected. For finite fields $\mathbb{K}$, we also compute the eigenvalues of the adjacency matrix of $\mathcal{G}(V)$. Then by Garland's method, we conclude that $\tilde{H}_m(\mathcal{F}(V);\mathbb{k}) = 0$ for all $0\leq m\leq \dim(V)-3$, where $\mathbb{k}$ is a field of characteristic $0$, provided that $\dim(V)^2 \leq |\mathbb{K}|$. Under these assumptions, we deduce that the barycentric subdivision of $\mathcal{F}(V)$ deformation retracts to the order complex of the certain rank selection of $\mathcal{F}(V)$ which is Cohen-Macaulay over $\mathbb{k}$. Finally, we apply our results to the Quillen poset of elementary abelian $p$-subgroups of a finite group and to the study of geometric properties of the poset of non-degenerate subspaces of $V$ and the poset of orthogonal decompositions of $V$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源