论文标题
部分可观测时空混沌系统的无模型预测
RFID: Towards Low Latency and Reliable DAG Task Scheduling over Dynamic Vehicular Clouds
论文作者
论文摘要
车辆云(VC)平台集成了移动车辆的异质和分布式资源,以提供及时且具有成本效益的计算服务。但是,由车辆的活动能力引起的VCS的动态性质(即车辆之间的接触持续时间有限)对执行具有定向的无循环图(DAG)结构的计算密集型应用程序/任务构成了独特的挑战,其中每个任务由多个相互依存的组件(subtasks)组成。在本文中,我们研究了DAG任务的日程安排在动态VC上,其中DAG任务的多个子任务跨车辆分散,然后通过合作利用车辆的资源进行处理。我们将DAG任务调度作为0-1整数编程,旨在最大程度地减少整个任务完成时间,同时确保高执行成功率,事实证明这是NP-HARD。为了解决这个问题,我们开发了一个排名和前瞻性的动态调度方案(RFID)。 RFID由(i)一个动态下降排名机制组成,该机制对不同子任务的计划优先级进行分类,同时明确考虑了DAG的顺序执行性质; (ii)一种基于资源稀缺的优先级变化机制,它克服了VC资源波动率引起的可能的性能降低; (iii)基于学位的加权最早的完成时间机构,该子任务为车辆的计划优先级最高,该子任务提供了快速执行以及可靠的传输链接。我们的仿真结果揭示了与基准方法相比,我们提出的方案的有效性。
Vehicular cloud (VC) platforms integrate heterogeneous and distributed resources of moving vehicles to offer timely and cost-effective computing services. However, the dynamic nature of VCs (i.e., limited contact duration among vehicles), caused by vehicles' mobility, poses unique challenges to the execution of computation-intensive applications/tasks with directed acyclic graph (DAG) structure, where each task consists of multiple interdependent components (subtasks). In this paper, we study scheduling of DAG tasks over dynamic VCs, where multiple subtasks of a DAG task are dispersed across vehicles and then processed by cooperatively utilizing vehicles' resources. We formulate DAG task scheduling as a 0-1 integer programming, aiming to minimize the overall task completion time, while ensuring a high execution success rate, which turns out to be NP-hard. To tackle the problem, we develop a ranking and foresight-integrated dynamic scheduling scheme (RFID). RFID consists of (i) a dynamic downward ranking mechanism that sorts the scheduling priority of different subtasks, while explicitly taking into account for the sequential execution nature of DAG; (ii) a resource scarcity-based priority changing mechanism that overcomes possible performance degradations caused by the volatility of VC resources; and (iii) a degree-based weighted earliest finish time mechanism that assigns the subtask with the highest scheduling priority to the vehicle which offers rapid task execution along with reliable transmission links. Our simulation results reveal the effectiveness of our proposed scheme in comparison to benchmark methods.