论文标题
部分可观测时空混沌系统的无模型预测
Rectilinear Planarity of Partial 2-Trees
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
A graph is rectilinear planar if it admits a planar orthogonal drawing without bends. While testing rectilinear planarity is NP-hard in general (Garg and Tamassia, 2001), it is a long-standing open problem to establish a tight upper bound on its complexity for partial 2-trees, i.e., graphs whose biconnected components are series-parallel. We describe a new O(n^2)-time algorithm to test rectilinear planarity of partial 2-trees, which improves over the current best bound of O(n^3 \log n) (Di Giacomo et al., 2022). Moreover, for partial 2-trees where no two parallel-components in a biconnected component share a pole, we are able to achieve optimal O(n)-time complexity. Our algorithms are based on an extensive study and a deeper understanding of the notion of orthogonal spirality, introduced several years ago (Di Battista et al, 1998) to describe how much an orthogonal drawing of a subgraph is rolled-up in an orthogonal drawing of the graph.