论文标题
部分可观测时空混沌系统的无模型预测
Graph-based sequential beamforming
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
This paper presents a Bayesian estimation method for sequential direction finding. The proposed method estimates the number of directions of arrivals (DOAs) and their DOAs performing operations on the factor graph. The graph represents a statistical model for sequential beamforming. At each time step, belief propagation predicts the number of DOAs and their DOAs using posterior probability density functions (pdfs) from the previous time and a different Bernoulli-von Mises state transition model. Variational Bayesian inference then updates the number of DOAs and their DOAs. The method promotes sparse solutions through a Bernoulli-Gaussian amplitude model, is gridless, and provides marginal posterior pdfs from which DOA estimates and their uncertainties can be extracted. Compared to nonsequential approaches, the method can reduce DOA estimation errors in scenarios involving multiple time steps and time-varying DOAs. Simulation results demonstrate performance improvements compared to state-of-the-art methods. The proposed method is evaluated using ocean acoustic experimental data.