论文标题
部分可观测时空混沌系统的无模型预测
A Multi-Objective approach to the Electric Vehicle Routing Problem
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The electric vehicle routing problem (EVRP) has garnered great interest from researchers and industrialists in an attempt to move from fuel-based vehicles to healthier and more efficient electric vehicles (EVs). While it seems that the EVRP should not be much different from traditional vehicle routing problems (VRPs), challenges like limited cruising time, long charging times, and limited availability of charging facilities for electric vehicles makes all the difference. Previous works target logistics and delivery-related solutions wherein a homogeneous fleet of commercial EVs have to return to the initial point after making multiple stops. On the opposing front, we solve a personal electric vehicle routing problem and provide an optimal route for a single vehicle in a long origin-destination (OD) trip. We perform multi-objective optimization - minimizing the total trip time and the cumulative cost of charging. In addition, we incorporate external and real-life elements like traffic at charging stations, detour distances for reaching a charging station, and variable costs of electricity at different charging stations into the problem formulation. In particular, we define a multi-objective mixed integer non-linear programming (MINLP) problem and obtain a feasible solution using the $ε$-constraint algorithm. We further implement meta-heuristic techniques such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) to obtain the most optimal route and hence, the objective values. The experiment is carried out for multiple self-generated data instances and the results are thereby compared.