论文标题

扩展卡尔曼过滤器的实际适用性

Extending the practical applicability of the Kalman Filter

论文作者

Ramos, J Humberto

论文摘要

Schmidt过滤器是Kalman过滤器的修改,它允许将系统参数作为状态附加并考虑其在过滤过程中的不确定性效果,而无需估算此类参数。仅考虑但未估计的状态通常被称为\ textit {timest}或\ textIt {tasting}状态。这项研究的主要贡献是Schmidt-Kalman滤波器的配方,该滤波器结合了众所周知的平方根和分解过滤形式的数值鲁棒性,加上主动尝试更新\ textit {考虑{考虑}状态的能力。这项研究中提出的过滤器配方是卡尔曼过滤器的基本扩展。因此,这项工作的配方也适用于扩展的Kalman过滤框架。更重要的是,与典型的扩展或Schmidt Kalman滤光片相比,它们显示出可处理非线性,更大的初始不确定性以及条件较差的系统。由于新过滤器直接基于Schmidt过滤器,因此它们提供了一种新颖而直率的过滤框架,从而允许使用更简单的过滤器,在该过滤器中可能需要更高级或更精心设计的技术。

A Schmidt filter is a modification of the Kalman filter that allows to append system parameters as states and considers their uncertainty effect in the filtering process without attempting to estimate such parameters. The states that are only considered but not estimated, are generally known as \textit{consider} or \textit{considered} states. The main contributions of this research are the formulations of a Schmidt-Kalman filter that incorporates the numerical robustness of the well-known square root and factorized filtering forms plus the capacity of actively attempting to update the \textit{considered} states. The filters formulations proposed in this research are a fundamental extension of the Kalman filter. Therefore, the formulations of this work also apply within the Extended Kalman filter framework. More importantly, they are shown to handle nonlinearities, larger initial uncertainties, and poorly conditioned systems better than a typical Extended or Schmidt Kalman filter. Because the new filters are directly based on the Schmidt filter, they offer a novel and straight-forward filtering framework, allowing the use of a more simple filter where a more advanced or elaborated technique could have been needed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源