论文标题

$ \ mathbb {z} _p $ -modules上的gassner和burau表示

Gassner and Burau representations over $\mathbb{Z}_p$-modules

论文作者

Bharathram, Vasudha

论文摘要

我们研究了Artin的编织组及其模型$ p $降低的两个经典表示。我们使用拓扑方法表明gassner表示$τ_n:b_n \ to \ text {gl} _n(\ mathbb {z}} [t_1^{\ pm 1},\ ldots,\ ldots,t_n^{\ pm 1}] $ P> 1 $。然后,我们给出一个新颖的证据,表明$ b_3 $的burau代表是所有$ p> 1 $的忠实Modulo $ p $,并建议向Modulo $ p $ burau代表申请较高的编织组。

We study two classical representations of Artin's braid group and their modulo $p$ reductions. We use topological methods to show that the Gassner representation $τ_n: B_n\to\text{GL}_n(\mathbb{Z}[t_1^{\pm 1}, \ldots, t_n^{\pm 1}])$ is faithful for all $n$, and furthermore that it is faithful modulo $p$ for all integers $p>1$. We then give a novel proof that the Burau representation of $B_3$ is faithful modulo $p$ for all $p>1$, and suggest applications to the modulo $p$ Burau representation for higher braid groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源