论文标题

一个基本矩阵的家庭完全非负性

Totally non-negativity of a family of change-of-basis matrices

论文作者

Galvin, David, Zhang, Yufei

论文摘要

令$ {\ bf a} =(a_1,a_2,\ ldots,a_n)$和$ {\ bf e} =(e_1,e_1,e_2,\ ldots,e_n)$是真实的序列。用$ m _ {{{\ bf e} \ rightarrow {\ bf a}} $ $(n+1)\ times(n+1)$(m,k)$ entrix($ m,k)$ entrix($ m,k) $(x-a_1)\ cdots(x-a_k)$在$(x-e_1)\ cdots(x-e_m)$的扩展中作为多项式$ 1,x-a_1,\ ldots的线性组合,(x-a_1),(x-a_1)\ cdots(x-a_m)$。 By appropriate choice of ${\bf a}$ and ${\bf e}$ the matrix $M_{{\bf e}\rightarrow {\bf a}}$ can encode many familiar doubly-indexed combinatorial sequences, such as binomial coefficients, Stirling numbers of both kinds, Lah numbers and central factorial numbers. 在所有这四个示例中,$ m _ {{\ bf e} \ rightarrow {\ bf a}} $享受总非负性的属性 - 其所有正方形子膜的决定因素是非负的。这导致了一个自然的问题:一般而言,何时是$ m _ {{\ bf e} \ rightarrow {\ bf a}}} $完全非阴性? Galvin和Pacurar在$ {\ bf e} $上发现了一个简单的条件,该条件表征了$ m _ {{\ bf e} \ rightArrow {\ bf a}} $当$ {\ bf a} $的总非阴性。在这里,我们充分扩展了此结果。对于任意的真实序列$ {\ bf a} $和$ {\ bf e} $,我们提供的条件可以在$ o(n^2)$时间中检查,该条件确定$ m _ {{\ bf e} \ rightArrow {\ rightArrow {\ rightArrow {\ bf a}} $完全不可用。当$ m _ {{{\ bf e} \ rightarrow {\ bf a}} $完全非阴性时,我们以平面网络目睹了这一点,其权重是非负的,其路径矩阵为$ m _ {{\ bf e} \ rightarrow {\ rightarrow {\ rightarrow {\ bf a} $。如果不是这样,我们就会以明确的负小调目睹这一点。

Let ${\bf a}=(a_1, a_2, \ldots, a_n)$ and ${\bf e}=(e_1, e_2, \ldots, e_n)$ be real sequences. Denote by $M_{{\bf e}\rightarrow {\bf a}}$ the $(n+1)\times(n+1)$ matrix whose $(m,k)$ entry ($m, k \in \{0,\ldots, n\}$) is the coefficient of the polynomial $(x-a_1)\cdots(x-a_k)$ in the expansion of $(x-e_1)\cdots(x-e_m)$ as a linear combination of the polynomials $1, x-a_1, \ldots, (x-a_1)\cdots(x-a_m)$. By appropriate choice of ${\bf a}$ and ${\bf e}$ the matrix $M_{{\bf e}\rightarrow {\bf a}}$ can encode many familiar doubly-indexed combinatorial sequences, such as binomial coefficients, Stirling numbers of both kinds, Lah numbers and central factorial numbers. In all four of these examples, $M_{{\bf e}\rightarrow {\bf a}}$ enjoys the property of total non-negativity -- the determinants of all its square submatrices are non-negative. This leads to a natural question: when, in general, is $M_{{\bf e}\rightarrow {\bf a}}$ totally non-negative? Galvin and Pacurar found a simple condition on ${\bf e}$ that characterizes total non-negativity of $M_{{\bf e}\rightarrow {\bf a}}$ when ${\bf a}$ is non-decreasing. Here we fully extend this result. For arbitrary real sequences ${\bf a}$ and ${\bf e}$, we give a condition that can be checked in $O(n^2)$ time that determines whether $M_{{\bf e}\rightarrow {\bf a}}$ is totally non-negative. When $M_{{\bf e}\rightarrow {\bf a}}$ is totally non-negative, we witness this with a planar network whose weights are non-negative and whose path matrix is $M_{{\bf e}\rightarrow {\bf a}}$. When it is not, we witness this with an explicit negative minor.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源