论文标题
偶性点数和半月二八度的点nd $ _2 $ hf $ _2 $ o $ $ _7 $
Pinch points and half-moons in dipolar-octupolar Nd$_2$Hf$_2$O$_7$
论文作者
论文摘要
虽然确定自旋冰中的捏点散射模式是由与磁矩相关的新出现的库仑相,而磁矩无差异,但更复杂的汉密尔顿人可以引入散发性 - 满足部分。如果这两个部分保持脱钩,它们会产生不同特征的共存。在这里,我们表明,$ {\ rm ND_2HF_2O_7} $中的时刻形成了静态的远程有序的基态,平坦的,间隙的捏点激发和分散激发。这些结果证实了最近的理论,这些理论预测,分散模式是由差异 - 满足时刻产生的,它具有自己的捏点模式,在实验上被视为“半月”。
While it is established that the pinch point scattering pattern in spin ice arises from an emergent coulomb phase associated with magnetic moment that is divergence-free, more complex Hamiltonians can introduce a divergence-full part. If these two parts remain decoupled, they give rise to the co-existence of distinct features. Here we show that the moment in ${\rm Nd_2Hf_2O_7}$ forms a static long-range ordered ground state, a flat, gapped pinch point excitation and dispersive excitations. These results confirm recent theories which predict that the dispersive modes, which arise from the divergence-full moment, host a pinch point pattern of their own, observed experimentally as `half-moons'.