论文标题

QCD Sum-RULES中的图解重新归一化方法的应用

Applications of Diagrammatic Renormalization Methods in QCD Sum-Rules

论文作者

de Oliveira, T., Harnett, D., Palameta, A., Steele, T. G.

论文摘要

在QCD Sum-Rule方法中,基本场理论数量是复合算子的相关函数,它用作HADRONIC插值场。在常规方法中,循环校正QCD相关函数的挑战之一是复合算子的重新归一化诱导的混合。这涉及一个多步骤的过程,该过程将运算符重新归一化,然后以这种混合基础计算相关函数。随着重新归一化化的混合,随着操作员的增加,这种过程变得越来越复杂,这种情况随着操作员质量尺寸的增加而加剧的情况,如四夸克,五夸克和混合体。示意性重新规定为常规操作员重新归一化方法提供了替代方法。概述了示意法重归其化方法,并应用于增加复杂性的各种QCD总规则示例。结果是基准测试的,示意法与常规操作员混合方法形成鲜明对比。概述了图解重新归一化方法的优势和概念解释,并探讨了技术微妙之处。

In QCD sum-rule methods, the fundamental field-theoretical quantities are correlation functions of composite operators that serve as hadronic interpolating fields. One of the challenges of loop corrections to QCD correlation functions in conventional approaches is the renormalization-induced mixing of composite operators. This involves a multi-step process of first renormalizing the operators, and then calculating the correlation functions in this mixed basis. This process becomes increasingly complicated as the number of operators mixed under renormalization increases, a situation that is exacerbated as the operator mass dimension increases in important physical systems such as tetraquarks, pentaquarks, and hybrids. Diagrammatic renormalization provides an alternative to the conventional operator renormalization approach. Diagrammatic renormalization methods are outlined and applied to a variety of QCD sum-rule examples of increasing complexity. The results are benchmarked, and the diagrammatic method is contrasted with the conventional operator mixing approach. Advantages and conceptual interpretations of the diagrammatic renormalization approach are outlined and technical subtleties are explored.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源