论文标题
DSR:迈向无人机图像超分辨率
DSR: Towards Drone Image Super-Resolution
论文作者
论文摘要
尽管近年来取得了显着的进展,但开发了几个局限性的单像超分辨率方法。具体而言,它们在具有某些降解的固定内容域中进行培训(无论是合成还是真实)。他们所学的先验容易过度适应培训配置。因此,目前尚不清楚对新型领域(例如无人机顶视图数据以及跨海)的概括。尽管如此,将无人机与适当的图像超分辨率配对非常有价值。它将使无人机能够飞行更高的覆盖范围,同时保持高图像质量。 为了回答这些问题并为无人机图像超级分辨率铺平了道路,我们特别关注单像案例。我们提出了一个新颖的无人机图像数据集,其场景在低分辨率和高分辨率下捕获,并在高度范围内捕获。我们的结果表明,现成的最先进的网络见证了这个不同领域的性能下降。我们还表明,简单的微调,并将高度意识纳入网络的体系结构,都可以改善重建性能。
Despite achieving remarkable progress in recent years, single-image super-resolution methods are developed with several limitations. Specifically, they are trained on fixed content domains with certain degradations (whether synthetic or real). The priors they learn are prone to overfitting the training configuration. Therefore, the generalization to novel domains such as drone top view data, and across altitudes, is currently unknown. Nonetheless, pairing drones with proper image super-resolution is of great value. It would enable drones to fly higher covering larger fields of view, while maintaining a high image quality. To answer these questions and pave the way towards drone image super-resolution, we explore this application with particular focus on the single-image case. We propose a novel drone image dataset, with scenes captured at low and high resolutions, and across a span of altitudes. Our results show that off-the-shelf state-of-the-art networks witness a significant drop in performance on this different domain. We additionally show that simple fine-tuning, and incorporating altitude awareness into the network's architecture, both improve the reconstruction performance.