论文标题

Nakajima的Quiver品种和三角形基础级别2群集代数

Nakajima's quiver varieties and triangular bases of rank-2 cluster algebras

论文作者

Li, Li

论文摘要

Berenstein和Zelevinsky引入了量子群集代数[Adv。 Math,2005年和三角基碱[IMRN,2014]。 Lee-li-rupel-Zelevinsky [PNAS,2014年]的支持猜想断言,三角基元素对等级-2群集代数的支持受到明确描述的区域的界定,这可能是凹面的。在本文中,我们证明了所有偏度对称Rank-2群集代数的支持猜想。

Berenstein and Zelevinsky introduced quantum cluster algebras [Adv. Math, 2005] and the triangular bases [IMRN, 2014]. The support conjecture by Lee-Li-Rupel-Zelevinsky [PNAS, 2014] asserts that the support of a triangular basis element for a rank-2 cluster algebra is bounded by an explicitly described region that is possibly concave. In this paper, we prove the support conjecture for all skew-symmetric rank-2 cluster algebras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源