论文标题
卡金代数,卡兹丹的财产(t),强烈自我吸收的c* - 代理
Calkin algebra, Kazhdan's property (T), strongly self-absorbing C*-algebras
论文作者
论文摘要
calkin代数对Corna稳定的电晕不是同构的,这些Cuntz代数〜$ {\ Mathcal O} _ \ Inftty $,任何其他Kirchberg代数,甚至是任何不合力的稳定的Corona,$ {\ Mathcal Z} $ - <Mathable $ - stable $ - c =证明依赖于可分离$ {\ mathrm c}^*$ - subergebras的相对换向因素的属性。
The Calkin algebra is not isomorphic to the corona of the stabilization of the Cuntz algebra~${\mathcal O}_\infty$, any other Kirchberg algebra, or even the corona of the stabilization of any unital, ${\mathcal Z}$-stable ${\mathrm C}^*$-algebra. The proof relies on properties of relative commutants of separable ${\mathrm C}^*$-subalgebras.