论文标题

声纳:联合体系结构和系统优化搜索

SONAR: Joint Architecture and System Optimization Search

论文作者

Jääsaari, Elias, Ma, Michelle, Talwalkar, Ameet, Chen, Tianqi

论文摘要

越来越需要在各种新的硬件平台上为不同任务部署机器学习。这种部署方案需要应对多个挑战,包括确定可以实现合适的预测准确性(体系结构搜索)的模型体系结构,并找到有效的模型实施,以满足基本的硬件特定系统约束,例如延迟(系统优化搜索)。现有作品将架构搜索和系统优化搜索视为单独的问题,并将其顺序解决。在本文中,我们建议共同解决这些问题,并引入一种简单但有效的基线方法,称为Sonar,该方法交织了这两个搜索问题。 Sonar的目标是通过将早期停止应用于两个搜索过程来有效地优化预测准确性和推理潜伏期。我们对多个不同硬件后端的实验表明,Sonar识别出几乎最佳体系结构的速度比蛮力方法快30倍。

There is a growing need to deploy machine learning for different tasks on a wide array of new hardware platforms. Such deployment scenarios require tackling multiple challenges, including identifying a model architecture that can achieve a suitable predictive accuracy (architecture search), and finding an efficient implementation of the model to satisfy underlying hardware-specific systems constraints such as latency (system optimization search). Existing works treat architecture search and system optimization search as separate problems and solve them sequentially. In this paper, we instead propose to solve these problems jointly, and introduce a simple but effective baseline method called SONAR that interleaves these two search problems. SONAR aims to efficiently optimize for predictive accuracy and inference latency by applying early stopping to both search processes. Our experiments on multiple different hardware back-ends show that SONAR identifies nearly optimal architectures 30 times faster than a brute force approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源