论文标题
自由边界最小表面理论的贡献
Contributions to the theory of free boundary minimal surfaces
论文作者
论文摘要
在本文中,我们对自由边界最小表面的研究提出了各种贡献。在介绍了一些基本工具并讨论了允许接触集时与Morse索引的定义相关的一些微妙方面之后,我们将论文分为两个部分。在本文的第一部分中,我们研究了三维环境歧管中有界面索引的自由边界最小表面。更具体地说,我们介绍了一系列此类表面的退化分析,证明(直至子序列)它们会顺利进行有限的许多点,并且在这样的“不良”点上,我们至少可以“统一”控制拓扑和表面的区域。作为推论,我们获得了不同的“复杂性标准”(尤其是:拓扑,区域和摩尔斯索引)的完整图片,比较了自由边界最小表面在具有正标曲率和平均凸边界的环境流形中。在第二部分中,我们着重于模棱两可的最小值方案,以证明具有规定的拓扑类型的自由边界最小表面的存在。原则是选择环境流形的一组适当的异构体,以便准确获得我们正在寻找的拓扑。我们回想起了模棱两可的最低理论定理的证明,我们还证明了所得表面的摩尔斯索引指数的束缚。最后,我们应用此过程来显示一个新的自由边界最小表面的家族,并在三维单位球中具有连接的边界和任意属。
In this thesis, we present various contributions to the study of free boundary minimal surfaces. After introducing some basic tools and discussing some delicate aspects related to the definition of Morse index when allowing for a contact set, we divide the thesis in two parts. In the first part of this dissertation, we study free boundary minimal surfaces with bounded Morse index in a three-dimensional ambient manifold. More specifically, we present a degeneration analysis of a sequence of such surfaces, proving that (up to subsequence) they converge smoothly away from finitely many points and that, around such `bad' points, we can at least `uniformly' control the topology and the area of the surfaces in question. As a corollary, we obtain a complete picture of the way different `complexity criteria' (in particular: topology, area and Morse index) compare for free boundary minimal surfaces in ambient manifolds with positive scalar curvature and mean convex boundary. In the second part, we focus on an equivariant min-max scheme to prove the existence of free boundary minimal surfaces with a prescribed topological type. The principle is to choose a suitable group of isometries of the ambient manifold in order to obtain exactly the topology we are looking for. We recall a proof of the equivariant min-max theorem, and we also prove a bound on the Morse index of the resulting surfaces. Finally, we apply this procedure to show the existence of a new family of free boundary minimal surfaces with connected boundary and arbitrary genus in the three-dimensional unit ball.