论文标题
争夺和纠缠旋转的颗粒
Scrambling and Entangling Spinning Particles
论文作者
论文摘要
在本文中,我们重新审视了两个散射旋转颗粒的重力ikonal振幅,并检查通过三方信息量化的旋转空间中的拼凑功能。我们发现,在非权威主义极限和特殊的高能极限中,主要贡献是普遍且理论无关的数量。最小的耦合被选出,最小的争夺在不同的高矩限制中。我们还检查了纠缠产生的初始状态依赖性,发现具有消失的旋转的旋转状态可能不一定是最难纠缠的最难。有趣的是,在混合国家的家族中,那里唯一的P-REP州已知是经典混合状态的最佳近似值,被选为最小的纠缠。
In this paper we revisit the gravitational eikonal amplitudes of two scattering spinning particles and inspect their scrambling power in the spin spaces that is quantified through the tripartite information. We found that in the non-relativistic limit and a special high-energy limit the leading contribution is a quantity that is universal and theory independent. The minimal coupling is singled out with minimal scrambling in a different high momenta limit. We also inspected the initial state dependence of entanglement generation and found that the spin coherent state with vanishing spin may not necessarily be the hardest to entangle. Interestingly, among a family of mixed states, the only P-rep state there known to be the best approximation of classical mixed states was singled out as one with minimal entanglement generated.