论文标题

关于时间图表示学习和生成建模的调查

A Survey on Temporal Graph Representation Learning and Generative Modeling

论文作者

Gupta, Shubham, Bedathur, Srikanta

论文摘要

时间图代表实体之间的动态关系,并发生在许多现实生活中的应用中,例如社交网络,电子商务,通信,道路网络,生物系统等。他们需要根据其生成建模和表示学习的研究超出与静态图有关的研究。在这项调查中,我们全面回顾了近期针对处理时间图提出的神经时间依赖图表的学习和生成建模方法。最后,我们确定了现有方法的弱点,并讨论了我们最近发表的论文小提格的研究建议[24]。

Temporal graphs represent the dynamic relationships among entities and occur in many real life application like social networks, e commerce, communication, road networks, biological systems, and many more. They necessitate research beyond the work related to static graphs in terms of their generative modeling and representation learning. In this survey, we comprehensively review the neural time dependent graph representation learning and generative modeling approaches proposed in recent times for handling temporal graphs. Finally, we identify the weaknesses of existing approaches and discuss the research proposal of our recently published paper TIGGER[24].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源