论文标题
拓扑图代数
Tracial weights on topological graph algebras
论文作者
论文摘要
我们描述了第二个可计数拓扑图的边界路径空间上的两种常规不变测量,这使我们能够描述图形c $^{*} $ - 代数 - 不变性不变的所有极端曲折的权重。使用此描述,我们证明C $^{*} $上的所有曲折权重 - 第二个可计数拓扑图的代数时,当图形免费时,均值不变。这特别意味着当图形c $^{*} $ - 代数很简单且可分开时,所有曲折的权重均为量规不变。
We describe two kinds of regular invariant measures on the boundary path space of a second countable topological graph, which allows us to describe all extremal tracial weights on the graph C$^{*}$-algebra which are not gauge-invariant. Using this description we prove that all tracial weights on the C$^{*}$-algebra of a second countable topological graph are gauge-invariant when the graph is free. This in particular implies that all tracial weights are gauge-invariant when the graph C$^{*}$-algebra is simple and separable.