论文标题

溶液和连续限制到非本地离散正弦 - 戈登方程:双线性还原法

Solutions and continuum limits to nonlocal discrete sine-Gordon equations: bilinearization reduction method

论文作者

Xiang, Xiao-bo, Zhao, Song-lin, Shi, Ying

论文摘要

与非局部连续和半分化整合系统一样,非局部离散整合系统的研究也很感兴趣。在本文中,研究了完全离散的负顺序Ablowitz-Kaup-Newell-Segur方程的局部和非局部减少。我们通过双线性还原方法将双重casoratian形式的精确溶液以减少的非局部离散正弦格式方程提供。然后,通过连续限制,获得了非局部半差正弦的正弦 - 戈登方程及其溶液。通过渐近分析分析和说明孤子溶液的动力学。本文中的研究思想和方法可以推广,以促进有关非本地离散整合系统的研究。

As with nonlocal continuous and semi-discrete integrable systems, the study of nonlocal discrete integrable systems is also of interest. In this paper, local and nonlocal reductions of a fully discrete negative order Ablowitz-Kaup-Newell-Segur equation are investigated. We give out the exact solutions in double Casoratian form to the reduced nonlocal discrete sine-Gordon equations by the bilinearization reduction method. Then, through the continuum limits, nonlocal semi-discrete sine-Gordon equations and their solutions are obtained. The dynamics of soliton solutions are analyzed and illustrated by asymptotic analysis. The research ideas and methods in this paper can be generalized to promote the studies on nonlocal discrete integrable systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源