论文标题
谎言代数量子相还原
Lie Algebraic Quantum Phase Reduction
论文作者
论文摘要
我们引入了量子非线性振荡器的相减少理论的一般框架。通过采用量子轨迹理论,我们根据随机schrödinger方程来定义极限循环轨迹和相位。由于扰动由量子动力学中的统一变换表示,因此我们计算相对于lie代数的发生器。我们的方法表明,连续测量会产生相簇并改变相响应曲线。与从密度运算符获得的间接指标不同,可观察到的簇捕获了单个量子振荡器的相动态。此外,我们的方法可以应用于缺乏经典对应物的有限级系统。
We introduce a general framework of phase reduction theory for quantum nonlinear oscillators. By employing the quantum trajectory theory, we define the limit-cycle trajectory and the phase according to a stochastic Schrödinger equation. Because a perturbation is represented by unitary transformation in quantum dynamics, we calculate phase response curves with respect to generators of a Lie algebra. Our method shows that the continuous measurement yields phase clusters and alters the phase response curves. The observable clusters capture the phase dynamics of individual quantum oscillators, unlike indirect indicators obtained from density operators. Furthermore, our method can be applied to finite-level systems that lack classical counterparts.