论文标题
膜范式内的Kerr黑洞
Kerr Black Holes within the Membrane Paradigm
论文作者
论文摘要
我们认为膜的视点是旋转黑洞的Kerr解决方案上的LàParikh-Wilczek。计算近距离拉伸膜的应力能量张量,并将其与粘性流体的应力调节器进行比较,我们根据Kerr几何形状恢复了传输系数。双流体的粘度保持恒定,而其余的传输系数成为径向和角坐标的复杂函数。我们研究了两个特定黑洞的压力,膨胀和能量/动量密度的定性行为:缓慢旋转的黑洞,其角动量为1%的黑洞质量平方和极端的Kerr黑洞。对于Boyer-Lindquist坐标中的KERR溶液,这些传输系数通常在径向坐标的不同值中,在地平线和黑洞的Schwarzschild radius之间的范围内,取决于固定角度方向。我们在膜范式与ADS/CFT对应关系,KSS结合违规,坐标选择以及KERR解决方案的非平稳扩展之间的关系之间简要讨论了我们的发现。
We consider the membrane viewpoint a là Parikh-Wilczek on the Kerr solution for a rotating black hole. Computing the stress-energy tensor of a close-to-the-horizon stretched membrane and comparing it to the stress-tensor of a viscous fluid, we recover transport coefficients in terms of the Kerr geometry. Viscosities of the dual fluid remain constant, while the rest of the transport coefficients become complex functions of radial and angle coordinates. We study the qualitative behavior of the pressure, expansion, and energy/momentum densities for two specific black holes: the slowly rotating black hole, with the angular momentum of one percent of the black hole mass squared, and the extremal Kerr black hole. For the Kerr solution in the Boyer-Lindquist coordinates, these transport coefficients generally have poles at different values of the radial coordinate in the range between the horizon and the Schwarzschild radius of the black hole, in dependence on the fixed angle direction. We briefly discuss our findings in the context of a relation between the Membrane Paradigm and the AdS/CFT correspondence, the KSS bound violation, the coordinate choice, and a non-stationary extension of the Kerr solution.