论文标题
关于不断发展的Erdős-rényi图的流行病爵士
SIR Epidemics on Evolving Erdős-Rényi Graphs
论文作者
论文摘要
在标准的SIR模型中,感染的顶点在每个边缘独立地以$λ$的速度感染其邻居。他们还以$γ$恢复。在这项工作中,我们考虑了图形结构本身与SIR Dynamics共同发展的SIR-$ω$模型。具体而言,$ s-i $连接以$ω$打破。然后,使用概率$α$,$ s $将其重新定为另一个均匀选择的顶点;而且概率$ 1-α$,此边缘被简单地删除。当$α= 1 $时,sir- $ω$模型成为evosir模型。江等。在\ cite {domath}中证明,随着$λ$接近关键感染率$λ_c$,evosir模型中爆发的概率收敛到0。另一方面,\ cite {domath}中的数值实验表明,作为$λ\至λ_c$,(在爆发时条件下)被感染的顶点的分数可能不会收敛到0,这被称为不连续相变。在\ cite {bb}和布里顿(Bliton)和布里顿(Britton)为连续和不连续的相变提供了两个(不匹配的)条件,用于Sir-$ω$模型中受感染顶点的分数。在这项工作中,我们获得了\ er \ sir- $ω$模型的最终流行大小的不连续相过渡的必要条件,从而缩小了这两个条件之间的差距。
In the standard SIR model, infected vertices infect their neighbors at rate $λ$ independently across each edge. They also recover at rate $γ$. In this work we consider the SIR-$ω$ model where the graph structure itself co-evolves with the SIR dynamics. Specifically, $S-I$ connections are broken at rate $ω$. Then, with probability $α$, $S$ rewires this edge to another uniformly chosen vertex; and with probability $1-α$, this edge is simply dropped. When $α=1$ the SIR-$ω$ model becomes the evoSIR model. Jiang et al. proved in \cite{DOMath} that the probability of an outbreak in the evoSIR model converges to 0 as $λ$ approaches the critical infection rate $λ_c$. On the other hand, numerical experiments in \cite{DOMath} revealed that, as $λ\to λ_c$, (conditionally on an outbreak) the fraction of infected vertices may not converge to 0, which is referred to as a discontinuous phase transition. In \cite{BB} Ball and Britton give two (non-matching) conditions for continuous and discontinuous phase transitions for the fraction of infected vertices in the SIR-$ω$ model. In this work, we obtain a necessary and sufficient condition for the emergence of a discontinuous phase transition of the final epidemic size of the SIR-$ω$ model on \ER\, graphs, thus closing the gap between these two conditions.