论文标题
跨模式门控注意融合用于多模式分析
Cross-Modality Gated Attention Fusion for Multimodal Sentiment Analysis
论文作者
论文摘要
多模式情感分析是一项重要的研究任务,可以根据特定意见视频的不同模态数据来预测情绪得分。以前的许多研究都证明了利用不同方式跨不同方式的共享和独特信息的意义。但是,来自多模式数据的高阶组合信号也将有助于提取满足表示形式。在本文中,我们提出了CMGA,这是MSA的跨模式门控注意融合模型,倾向于在不同的模态对上进行足够的相互作用。 CMGA还增加了一个忘记的门来过滤交互过程中引入的嘈杂和冗余信号。我们在MSA,MOSI和MOSEI的两个基准数据集上进行了实验,以说明CMGA在几种基线模型上的性能。我们还进行了消融研究,以证明CMGA内部不同组件的功能。
Multimodal sentiment analysis is an important research task to predict the sentiment score based on the different modality data from a specific opinion video. Many previous pieces of research have proved the significance of utilizing the shared and unique information across different modalities. However, the high-order combined signals from multimodal data would also help extract satisfied representations. In this paper, we propose CMGA, a Cross-Modality Gated Attention fusion model for MSA that tends to make adequate interaction across different modality pairs. CMGA also adds a forget gate to filter the noisy and redundant signals introduced in the interaction procedure. We experiment on two benchmark datasets in MSA, MOSI, and MOSEI, illustrating the performance of CMGA over several baseline models. We also conduct the ablation study to demonstrate the function of different components inside CMGA.