论文标题
通过视频时间金字塔可视化时间的流逝
Visualizing the Passage of Time with Video Temporal Pyramids
论文作者
论文摘要
我们可以通过观看数月或几年来了解一个场景?在长时间播放中录制的视频将在多个时间范围内描绘有趣的现象,但识别和观看它们带来了挑战。该视频太长了,无法完整观看,并且某些事件的实时体验太慢,例如冰川静修。及时视频是总结长视频和可视化慢时尺度的常见方法。但是,时间段仅限于单个选择的时间频率,并且由于框架之间的混叠和时间不连续性,通常会出现闪烁。在本文中,我们提出了视频时间金字塔,该技术可以解决这些局限性并扩大可视化时间流逝的可能性。受到计算机视觉的空间图像金字塔的启发,我们开发了一种在时间域中构建视频金字塔的算法。视频时间金字塔的每个级别都会可视化不同的时间表。例如,每月时间表的视频通常非常适合可视化季节性变化,而一分钟时间尺度的视频最适合可视化日出或云层在天空中的运动。为了帮助探索不同的金字塔水平,我们还提出了一个视频谱图,以可视化整个金字塔的活动量,从而提供了场景动力学的整体概述,并能够跨时间和时间表探索和发现现象。为了证明我们的方法,我们从十个户外场景中建立了视频时间金字塔,每个户外场景都包含数月或数年的数据。我们将视频颞金字塔层与天真的时间隔离进行比较,发现我们的金字塔可以使别名观看长期变化。我们还证明,视频谱图通过实现概述和以细节为中心的观点来促进跨金字塔水平的现象的探索和发现。
What can we learn about a scene by watching it for months or years? A video recorded over a long timespan will depict interesting phenomena at multiple timescales, but identifying and viewing them presents a challenge. The video is too long to watch in full, and some occurrences are too slow to experience in real-time, such as glacial retreat. Timelapse videography is a common approach to summarizing long videos and visualizing slow timescales. However, a timelapse is limited to a single chosen temporal frequency, and often appears flickery due to aliasing and temporal discontinuities between frames. In this paper, we propose Video Temporal Pyramids, a technique that addresses these limitations and expands the possibilities for visualizing the passage of time. Inspired by spatial image pyramids from computer vision, we developed an algorithm that builds video pyramids in the temporal domain. Each level of a Video Temporal Pyramid visualizes a different timescale; for instance, videos from the monthly timescale are usually good for visualizing seasonal changes, while videos from the one-minute timescale are best for visualizing sunrise or the movement of clouds across the sky. To help explore the different pyramid levels, we also propose a Video Spectrogram to visualize the amount of activity across the entire pyramid, providing a holistic overview of the scene dynamics and the ability to explore and discover phenomena across time and timescales. To demonstrate our approach, we have built Video Temporal Pyramids from ten outdoor scenes, each containing months or years of data. We compare Video Temporal Pyramid layers to naive timelapse and find that our pyramids enable alias-free viewing of longer-term changes. We also demonstrate that the Video Spectrogram facilitates exploration and discovery of phenomena across pyramid levels, by enabling both overview and detail-focused perspectives.