论文标题
概率措施和重中心图的信息几何形状
Information geometry of the space of probability measures and barycenter maps
论文作者
论文摘要
在本文中,我们介绍了信息几何形状的最新发展,即Fisher指标的几何形状,二元结构和差异,概率措施的空间,尤其是Fisher指标的大地测量理论。此外,我们考虑了有关从信息几何形状的角度来看,关于哈达姆歧管的理想边界上的概率度量重点的几个事实。
In this article, we present recent developments of information geometry, namely, geometry of the Fisher metric, dualistic structures and divergences on the space of probability measures, particularly the theory of geodesics of the Fisher metric. Moreover, we consider several facts concerning the barycenter of probability measures on the ideal boundary of a Hadamard manifold from a viewpoint of the information geometry.