论文标题

数据驱动的发现细菌通过机器学习的趋化性迁移

Data-driven Discovery of Chemotactic Migration of Bacteria via Machine Learning

论文作者

Psarellis, Yorgos M., Lee, Seungjoon, Bhattacharjee, Tapomoy, Datta, Sujit S., Bello-Rivas, Juan M., Kevrekidis, Ioannis G.

论文摘要

大肠杆菌趋化运动在存在趋化剂场的情况下已通过湿实验室实验,随机计算模型以及基于部分微分方程的模型(PDES)进行了广泛的研究。桥接这些方法的最具挑战性的步骤是建立了所谓的趋化项的封闭形式,该术语描述了由于一系列生物化学过程而导致的细菌如何使其运动偏向于Chemonutirient浓度梯度。数据驱动的模型可用于学习趋化PDES(黑匣子模型)的整个进化运算符,或以更具针对性的方式仅学习趋化术语(灰色框模型)。在这项工作中,数据驱动的机器学习方法用于学习基础模型PDE(a)通过使用已建立的连续模型的仿真数据进行验证,并且(b)用于从实验数据中推断趋化性PDE。即使手头的数据稀疏(空间和/或时间粗糙),嘈杂的(由于测量值的固有随机性)或部分(例如,缺乏相关的化学吸引力领域的测量值),我们也可以尝试学习用于不断发展的细菌密度的封闭PDE的右手。实际上,我们表明,数据驱动的PDE在包括细菌密度场的短史(例如,在时间PDE中,就可测量的细菌密度而言,以高阶的形式)可以成功地预测细菌密度进化的进一步,甚至可能恢复了未衡量的链蛋白纤维纤维剂的估计。这项工作的主要工具是动态的有效低维(本着惠特尼和塔克斯的精神嵌入定理的精神)。然后可以模拟所得的数据驱动的PDE,以重现/预测计算或实验性细菌密度谱数据,并估算基础(未测量的)Chemonutrient Fielt Fielt Evolution。

E. coli chemotactic motion in the presence of a chemoattractant field has been extensively studied using wet laboratory experiments, stochastic computational models as well as partial differential equation-based models (PDEs). The most challenging step in bridging these approaches, is establishing a closed form of the so-called chemotactic term, which describes how bacteria bias their motion up chemonutrient concentration gradients, as a result of a cascade of biochemical processes. Data-driven models can be used to learn the entire evolution operator of the chemotactic PDEs (black box models), or, in a more targeted fashion, to learn just the chemotactic term (gray box models). In this work, data-driven Machine Learning approaches for learning the underlying model PDEs are (a) validated through the use of simulation data from established continuum models and (b) used to infer chemotactic PDEs from experimental data. Even when the data at hand are sparse (coarse in space and/or time), noisy (due to inherent stochasticity in measurements) or partial (e.g. lack of measurements of the associated chemoattractant field), we can attempt to learn the right-hand-side of a closed PDE for an evolving bacterial density. In fact we show that data-driven PDEs including a short history of the bacterial density field (e.g. in the form of higher-order in time PDEs in terms of the measurable bacterial density) can be successful in predicting further bacterial density evolution, and even possibly recovering estimates of the unmeasured chemonutrient field. The main tool in this effort is the effective low-dimensionality of the dynamics (in the spirit of the Whitney and Takens embedding theorems). The resulting data-driven PDE can then be simulated to reproduce/predict computational or experimental bacterial density profile data, and estimate the underlying (unmeasured) chemonutrient field evolution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源