论文标题

粗糙双向代数及其在粗糙双元素逻辑上的应用

Rough bi-Heyting algebra and its applications on Rough bi-intuitionistic logic

论文作者

Praba, B., Freeda, L. P. Anto

论文摘要

考虑了粗糙的半度性$(t,δ,\ nabla)$来描述一种特殊的分配粗糙半含量,称为粗糙双向代数。双向代数是布尔代数的扩展,它是通过较弱的概念来完成的,即补充$(^{*})$,双伪符号$(^{+})$,相对pseocoudecoundocoundoc-pseudocoudectlement $(\ rightarrow)$(\ rightarrow)$(\ rightarrow)$&diual相对$($)$($)$($)。在本文中,证明了粗糙的半度$(t,δ,\ nabla)$的元素是通过伪组件,相对伪组件以及它们的对偶来完成的。伪组件的定义导致了Brouwerian粗糙的半度性结构$(t,δ,\ nabla,^{*},rs(\ emptyset),rs(u))$(t,δ,δ,\ nabla)$。另外,它也证明了$(t,δ,\ nabla,\ rightarrow,\ leftarrow,rs(\ emptyset),rs(u))$是一个粗糙的双向代数。这些概念用示例说明了。作为一种应用,这种粗糙的双向代数用于建模粗糙的双关键逻辑。定义了语法,并定义和验证了粗略双关节逻辑的三种类型的语义。

A Rough semiring $(T,Δ,\nabla)$ is considered to describe a special distributive Rough semiring known as a Rough bi-Heyting algebra. A bi-Heyting algebra is an extension of boolean algebra and it is accomplished by weaker notion of complements namely pseudocomplement $(^{*})$, dual pseudocomplement $(^{+})$, relative pseudocomplement $(\rightarrow)$ and dual relative pseudocomplement $(\leftarrow)$. In this paper, it is proved that the elements of the Rough semiring $(T,Δ,\nabla)$ are accomplished with the pseudocomplement, relative pseudocomplement along with their duals. The definition of pseudocomplement leads to the concept of Brouwerian Rough semiring structure $(T,Δ,\nabla,^{*},RS(\emptyset),RS(U))$ on the Rough semiring $(T,Δ,\nabla)$. Also it is proved $(T,Δ,\nabla,\rightarrow,\leftarrow,RS(\emptyset),RS(U))$ is a Rough bi-Heyting algebra. The concepts are illustrated with the examples. As an application, this Rough bi-Heyting algebra is used to model Rough bi-intuitionistic logic. The syntax is defined and three types of semantics for Rough bi-intuitionistic logic are defined and validated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源