论文标题

透明形状重建的极化逆渲染

Polarimetric Inverse Rendering for Transparent Shapes Reconstruction

论文作者

Shao, Mingqi, Xia, Chongkun, Duan, Dongxu, Wang, Xueqian

论文摘要

在这项工作中,我们提出了一种通过利用偏振线提示来详细重建透明对象的新方法。大多数现有方法通常缺乏足够的约束,并且遭受了过度平滑的问题。因此,我们将极化信息作为互补提示引入。我们将对象的几何形状隐式表示为神经网络,而极化渲染能够从给定的形状和照明配置中呈现对象的极化图像。由于透明对象的传输,将渲染的极化图像与现实世界捕获的图像进行直接比较将存在其他错误。为了解决这个问题,引入了代表反射部分比例的反射百分比的概念。反射百分比由射线示踪剂计算,然后用于加权极化损失。我们为多视图透明形状重建构建了一个极化数据集以验证我们的方法。实验结果表明,我们的方法能够恢复详细的形状并提高透明物体的重建质量。我们的数据集和代码将在https://github.com/shaomq2187/transpir上公开获取。

In this work, we propose a novel method for the detailed reconstruction of transparent objects by exploiting polarimetric cues. Most of the existing methods usually lack sufficient constraints and suffer from the over-smooth problem. Hence, we introduce polarization information as a complementary cue. We implicitly represent the object's geometry as a neural network, while the polarization render is capable of rendering the object's polarization images from the given shape and illumination configuration. Direct comparison of the rendered polarization images to the real-world captured images will have additional errors due to the transmission in the transparent object. To address this issue, the concept of reflection percentage which represents the proportion of the reflection component is introduced. The reflection percentage is calculated by a ray tracer and then used for weighting the polarization loss. We build a polarization dataset for multi-view transparent shapes reconstruction to verify our method. The experimental results show that our method is capable of recovering detailed shapes and improving the reconstruction quality of transparent objects. Our dataset and code will be publicly available at https://github.com/shaomq2187/TransPIR.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源