论文标题

使用相同的双胞胎基准对人的面部相似性进行基准测试

Benchmarking Human Face Similarity Using Identical Twins

论文作者

Sami, Shoaib Meraj, McCauley, John, Soleymani, Sobhan, Nasrabadi, Nasser, Dawson, Jeremy

论文摘要

随着面部生物特征的广泛采用,自动面部识别(FR)应用中相同的双胞胎和非双线外观相似的问题变得越来越重要。由于相同的双胞胎和外观相似的面部相似性很高,因此这些面对对面部识别工具表示最困难的病例。这项工作介绍了迄今为止汇编的最大的双胞胎数据集之一,以解决两个挑战:1)确定相同的双胞胎和2)面部相似性的基线度量和2)应用此相似性措施来确定多ppelgangers或look-ailikes对大面部数据集的FR性能的影响。面部相似性度量是通过深度卷积神经网络确定的。该网络是针对量身定制的验证任务进行培训的,旨在鼓励网络将高度相似的面对对组合在一起,并在嵌入式空间中实现0.9799的测试AUC。提出的网络为任何两个给定的面提供了定量相似性评分,并已应用于大规模的面部数据集以识别相似的面对对。还执行了一项附加分析,该分析还将面部识别工具返回的比较分数以及提议网络返回的相似性分数。

The problem of distinguishing identical twins and non-twin look-alikes in automated facial recognition (FR) applications has become increasingly important with the widespread adoption of facial biometrics. Due to the high facial similarity of both identical twins and look-alikes, these face pairs represent the hardest cases presented to facial recognition tools. This work presents an application of one of the largest twin datasets compiled to date to address two FR challenges: 1) determining a baseline measure of facial similarity between identical twins and 2) applying this similarity measure to determine the impact of doppelgangers, or look-alikes, on FR performance for large face datasets. The facial similarity measure is determined via a deep convolutional neural network. This network is trained on a tailored verification task designed to encourage the network to group together highly similar face pairs in the embedding space and achieves a test AUC of 0.9799. The proposed network provides a quantitative similarity score for any two given faces and has been applied to large-scale face datasets to identify similar face pairs. An additional analysis which correlates the comparison score returned by a facial recognition tool and the similarity score returned by the proposed network has also been performed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源