论文标题

三量量子点旋转Qubits中的全渗透动力脱钩

Full-permutation dynamical decoupling in triple-quantum-dot spin qubits

论文作者

Sun, Bo, Brecht, Teresa, Fong, Bryan, Akmal, Moonmoon, Blumoff, Jacob Z., Cain, Tyler A., Carter, Faustin W., Finestone, Dylan H., Fireman, Micha N., Ha, Wonill, Hatke, Anthony T., Hickey, Ryan M., Jackson, Clayton A. C., Jenkins, Ian, Jones, Aaron M., Pan, Andrew, Ward, Daniel R., Weinstein, Aaron J., Whiteley, Samuel J., Williams, Parker, Borselli, Matthew G., Rakher, Matthew T., Ladd, Thaddeus D.

论文摘要

硅中自旋速度的动力脱钩可以增强保真度,并用于提取噪声过程的频谱。我们展示了一种全透明的动力脱钩技术,该技术周期性地交换了三个点量子的旋转。该序列不仅抑制了低频电荷 - 噪声和磁通诱导的误差;它还将泄漏错误重新集中到一阶,这对于仅编码的仅交换Qubits特别有趣。对于我们称为NZ1Y的特定结构,将量子隔离为从错误来源隔离到这样的程度,以至于我们测量出色的交换脉冲错误$ 5 \ times10^{ - 5} $。该序列维持大约18,000个交换脉冲的量子状态,将量子相干性从$ t_2^*= 2〜μ $ s扩展到$ t_2 = 720〜μ $ s。我们在实验上验证了一个错误模型,该模型包括$ 1/f $电荷噪声和$ 1/f $磁噪声,分为两种方式:通过直接交换量模拟,以及通过将假定的噪声光谱与派生的滤波器功能集成在一起,这两者都会重现测得的误差和相对于更改重复率的泄漏。

Dynamical decoupling of spin qubits in silicon can enhance fidelity and be used to extract the frequency spectra of noise processes. We demonstrate a full-permutation dynamical decoupling technique that cyclically exchanges the spins in a triple-dot qubit. This sequence not only suppresses both low frequency charge-noise- and magnetic-noise-induced errors; it also refocuses leakage errors to first order, which is particularly interesting for encoded exchange-only qubits. For a specific construction, which we call NZ1y, the qubit is isolated from error sources to such a degree that we measure a remarkable exchange pulse error of $5\times10^{-5}$. This sequence maintains a quantum state for roughly 18,000 exchange pulses, extending the qubit coherence from $T_2^*=2~μ$s to $T_2 = 720~μ$s. We experimentally validate an error model that includes $1/f$ charge noise and $1/f$ magnetic noise in two ways: by direct exchange-qubit simulation, and by integration of the assumed noise spectra with derived filter functions, both of which reproduce the measured error and leakage with respect to changing the repetition rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源