论文标题
一致的几乎奇异的超导电路的一致量化
Consistent Quantization of Nearly Singular Superconducting Circuits
论文作者
论文摘要
电路量子电动力学理论已根据经典的拉格朗日式成功地分析了超导电路,并描述了相应的量化哈密顿量。在这些网络的许多简化版本中,该建模涉及一个单数的Lagrangian,描述了固有的约束系统。在这项工作中,我们证明了Dirac-Bergmann理论对量化现实,几乎奇异的超导电路的失败,无论是相互倒数还是非倒数。对几乎奇异系统的正确处理涉及扰动性的出生分析。我们严格地证明了使用Kato-Rellich理论证明相应的扰动理论的有效性。我们发现,在许多情况下,这种正规分析的奇异极限与单数理论完全不同。使用Kirchhoff(和Tellegen)定律来处理约束的Dirac-Bergmann预测动态取决于非线性电路元素的详细参数,例如Josephson的感应。相比之下,从正则化的born-oppenheimer方法获得的低能动力学的限制行为表现出固定点结构,流向寄生能力值的几个通用固定点之一,呈零。
The theory of circuit quantum electrodynamics has successfully analyzed superconducting circuits on the basis of the classical Lagrangian, and the corresponding quantized Hamiltonian, describing these circuits. In many simplified versions of these networks, the modeling involves a Lagrangian that is singular, describing an inherently constrained system. In this work, we demonstrate the failure of the Dirac-Bergmann theory for the quantization of realistic, nearly singular superconducting circuits, both reciprocal and nonreciprocal. The correct treatment of nearly singular systems involves a perturbative Born-Oppenheimer analysis. We rigorously prove the validity of the corresponding perturbation theory using Kato-Rellich theory. We find that the singular limit of this regularized analysis is, in many cases, completely unlike the singular theory. Dirac-Bergmann, which uses the Kirchhoff's (and Tellegen's) laws to deal with constraints, predicts dynamics that depend on the detailed parameters of nonlinear circuit elements, e.g., Josephson inductances. By contrast, the limiting behavior of the low-energy dynamics obtained from the regularized Born-Oppenheimer approach exhibits a fixed point structure, flowing to one of a few universal fixed points as parasitic capacitance values go to zero.