论文标题
关于旋转器的泊松变换
On Poisson transform for spinors
论文作者
论文摘要
令$(τ,v_τ)$为$ \ mathrm {spin}(n)$的纺纱表示,让$(σ,v_σ)$为$ \ mathrm {spin}(n-1)$的纺纱表示,在限制$τ_{\ mid \ mathrm {n-1)中发生。 我们将真正的双曲空间$ h^n(\ mathbb r)$作为等级的一个同质空间$ \ mathrm {spin} _0(1,n)/\ mathrm {spin}(n)$和Spinor bundle $σH^n(\ nathbb r)$ h^n(\ m h^n(\ mathbb r) $ \ mathrm {spin} _0(1,n)\ times _ {\ mathrm {spin}(n)}v_τ$。 我们的目的是表征不变差分运算符的代数的特征宾法典音,该操作员作用于$σh^n(\ Mathbb r)$,可以写成$ l^p $ - bundle $ \ \ m mathrm {spin}(spin}(spin}(n)\ times _ \ \ \ times _ {\ mathrm mathrm mathrm mathrm} poisson的托管变换} $ s^{n-1} \ simeq \ mathrm {spin}(n)/\ mathrm {spin}(n-1)$ of $ h^n(\ mathbb r)$,价格为$ 1 <p <\ infty $。
Let $(τ,V_τ)$ be a spinor representation of $\mathrm{Spin}(n)$ and let $(σ,V_σ)$ be a spinor representation of $\mathrm{Spin}(n-1)$ that occurs in the restriction $τ_{\mid \mathrm{Spin}(n-1)}$. We consider the real hyperbolic space $H^n(\mathbb R)$ as the rank one homogeneous space $\mathrm{Spin}_0(1,n)/\mathrm{Spin}(n)$ and the spinor bundle $ΣH^n(\mathbb R)$ over $H^n(\mathbb R)$ as the homogeneous bundle $\mathrm{Spin}_0(1,n)\times_{\mathrm{Spin}(n)} V_τ$. Our aim is to characterize eigenspinors of the algebra of invariant differential operators acting on $ΣH^n(\mathbb R)$ which can be written as the Poisson transform of $L^p$-sections of the bundle $\mathrm{Spin}(n)\times_{\mathrm{Spin}(n-1)} V_σ$ over the boundary $S^{n-1}\simeq \mathrm{Spin}(n)/\mathrm{Spin}(n-1)$ of $H^n(\mathbb R)$, for $1<p<\infty$.